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1 Introduction

This essay delves into the realm of Quantum Field Theory (QFT) and its fascinating ex-
tension into curved space-time, a concept that unveils unexpected phenomena like Hawking
radiation. Primarily drawing from the lecture notes of L.H. Ford [2] and Stephen Hawking’s
orginal article [3], this text aims to illuminate the intriguing process of extending QFT to
the context of a Schwarzschild black hole, characterized by the absence of angular momen-
tum and electric charge. This approach provides a clear example of how black holes emit
particles with a thermal spectrum, o�ering insights into the complexities of QFT in curved
space-time.

The initial section of the essay presents an overview of Quantum Field Theory in the con-
text of flat space-time, followed by an examination of its application in curved space-time
surrounding black holes. Subsequently, the essay delves into demonstrating Hawking radi-
ation, specifically through the simplified case of massless, scalar fields within Schwarzschild
space-time. The discussion aims to unpack the process behind Hawking radiation, focus-
ing on both its derivation and broader implications, including the black hole information
paradox.

2 Quantum Field Theory in Curved Space-Time

Quantum Field Theory (QFT) links together the ideas of special relativity, quantum me-
chanics, and classical field theory into a coherent framework. It respects Lorentz invariance,
according to relativity, and adopts field quantization in harmony with quantum mechanics.
Using the Lagrangian method it allows to study the dynamics and interactions of fields. In
the flat, Minkowski space-time, particles are then defined as quantized excitations of their
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underlying quantum fields, representing discrete units of energy and momentum. In this con-
text QFT has o�ered precise predictions for a variety of applications, including the standard
model of particle physics.

However, the universe doesn’t always present a flat space-time. General Relativity de-
scribes space-time as a four-dimensional surface that can be distorted by the gravitational
pull of massive entities like black holes. This curvature necessitates a rethinking of QFT’s
fundamental principles. Adapting QFT to curved space-time presents challenges, especially
in defining core concepts such as particles, therefore adding layers of complexity to the the-
ory’s interpretation within this new framework. This section will explore these challenges.

Drawing inspiration from Stephen Hawking’s original work [3] and L.H. Ford’s lecture
notes [2], this approach treats space-time metric classically while applying quantum mechan-
ics to the interaction with the matter field. Matter fields obey standard wave equations, with
a critical di�erence: the Minkowski metric ÷µ‹ is replaced by the Schwarzschild metric gµ‹ :

÷µ‹ =

S

WWWWWWU

1 0 0 0
0 ≠1 0 0
0 0 ≠1 0
0 0 0 ≠1

T

XXXXXXV
æ gµ‹ =

S

WWWWWWU

r≠2M
r 0 0 0
0 ≠ r≠2M

r

≠1 0 0
0 0 ≠r2 0
0 0 0 ≠r2 sin2 ◊

T

XXXXXXV
(1)

This metric encapsulates space-time under the influence of a massive, non-rotating, spheri-
cally symmetric object, such as an uncharged, non-rotating black hole. The invariant square
of an infinitesimal line element then becomes :

ds2
÷ = dt2 ≠ dr2 ≠ r2d�2 æ ds2

g = (r ≠ 2M

r
)dt2 ≠ (r ≠ 2M

r
)≠1dr2 ≠ r2d�2 (2)

Where natural units are used (G = c = ~ = 1), d�2 = d◊2 + sin2 ◊dÏ2 and M is the black
hole’s mass.

The discussion will center on a real, massive scalar field denoted by „ to simplify discus-
sions. While the classical Klein-Gordon equation in flat space-time typically yields a general
solution in the form of a real superposition of plane waves [4], employing the Schwarzschild
metric leads to a significantly more complex equation, which in turn results in more complex
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solutions [5]:

(ÒµÒµ + m2)„ = 0

= gttˆ2
t „ + 1

Ò
|g|

ˆrú [
Ò

|g|grúrúˆrú„] + g◊◊

Ò
|g|

ˆ◊[
Ò

|g|ˆ◊„] + gÏÏˆ2
Ï„ + m2„

(3)

With the square root of the metric determinant
Ò

|g| = r≠2M
r r2 sin ◊ and the tortoise coordi-

nate rú = r + 2Mln(r/2M ≠ 1). The field can then be expanded in modes fÊlm(r, t, ◊, Ï) =
r≠1fÊl(r)Ylm(◊, „)e≠iÊt where Ylm are the spherical harmonics and fÊl(r) satisfies [1] :

ˆ2fÊl

ˆr2
ú

+ ( Ê2 ≠ [ m2 + l(l + 1)
r2 + 2M

r3 ] ◊ [ 1 ≠ 2M

r
] )fÊl = 0 (4)

Having demonstrated a method to transition from Quantum Field Theory in flat space-time
to a Schwarzschild space-time, the next step is to explore how quantizing a field in curved
space-time introduces di�culties in defining a unique vacuum state. This issue further
complicates the interpretation of what constitutes a particle in such contexts.

Canonical quantization elevates the field „(x, t) and its conjugate momentum �(xÕ, t) to
operator status, adhering to equal time commutation relations:

[„(x, t), �(xÕ, t)] = ”(x, xÕ) (5)

Using the index i for abstract purposes in order to facilitate discussions, the field expansion
can be expressed as a sum of annihilation and creation operators :

„ =
ÿ

i

(fiai + f ú
i a†

i ) (6)

In flat space-time, {fi} and {f ú
i } symbolize complete sets of solutions with positive and

negative frequencies, respectively, relative to the conventional Minkowski time coordinate.
Thus, {fi, fú

i } form a complete, orthonormal, and unique set of solutions to the wave equa-
tion, allowing the interpretation of ai and a†

i as particle annihilation and creation operators
for the ith state. The vacuum state |0Í is defined as the unique state from which no further
particle annihilation is possible, such that ai |0Í = 0 for all i.

However, in curved space-time, gravitational field-induced space-time curvature a�ects
time’s flow, varying with gravitational strength. This variance prevents the establishment
of a universal standard of time and thus the division into positive and negative frequencies
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becomes not feasible. Although it is still possible to define sets {fi} and {f ú
i } as complete

and orthonormal solutions:

(fi, fj) = i

ˆ
f ú

j

¡
ˆµfid�µ = ”i,j

(fi, fú
j ) = i

ˆ
fj

¡
ˆµfid�µ = 0

(7)

the conditions are not su�cient for a unique choice of {fi} and {f ú
i }.

A particularly interesting scenario is asymptotically flat space-time, which can be divided
into three regions: initially flat space-time in the past (1st

region), a non-flat intermediate
region (2nd

region), and flat space-time in the future (3rd
region). In the past and future,

sets {f1i} and {f3i} can respectively be defined, containing only positive frequencies with
respect to the Minkowski time coordinate in the 1st and 3rd regions. These sets also adhere
to orthogonality relations:

(f1i, f1j) = (f3i, f3j) = ”i,j (8) (f1i, fú
1j) = (f3i, fú

3j) = 0 (9)

Moreover, the sets {fi} and {f3i} being di�erent solutions of the wave equation every-
where in space-time, the field operator can be expanded according to either of these sets:

„ =
ÿ

i

(a1if1i + a†
1if

ú
1i) =

ÿ

i

(a3if3i + a†
3if

ú
3i) (10)

The annihilation and creation operators in the past and future (a1i, a†
1i, a3i, a†

3i) demonstrate
that an initial vacuum state in the past (|01Í) does not equate to a vacuum state in the
future (a3i |01Í ”= 0), leading to an ambiguity in particle definition. This can be seen as if
the fluctuating metric (or gravitational field) was generating a specific quantity of particles
associated with the scalar field. Further exploration reveals relationships between past and
future modes:

f1i =
ÿ

k

(–ikf3k + —ikf ú
3k) (11) f3k =

ÿ

i

(–ú
ikf1i ≠ —ikf ú

1i) (12)

Given that a1i = („, f1i) and a3i = („, f3i), the Bogolubov transformations, expressing
relations between two sets of operators, can be derived:
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a1i =
ÿ

k

(–ú
ika3k ≠ —ú

ika†
3k) (13) a3i =

ÿ

i

(–ika1i + —ú
ika†

1i) (14)

Inserting (11) into the orthogonality relations (8) and (9), one can derive conditions on
the Bogolubov coe�cients :

ÿ

k

(–ik–jkú ≠ —ik—jkú) = ”ij (15)

This relationship will be especially useful in the upcoming section for calculating the average
number of particles emitted by the black.

3 Black Holes and Hawking Radiation

Hawking radiation emerges as the thermal black body radiation from black holes. Although
yet to be observed experimentally due to its low intensity, far below the sensitivity of current
telescopes, it stands as a profound example of quantum field theory in curved space-time.

Consider, for illustrative simplicity, the case of a Schwarzschild black hole. Such black
holes theoretically form from the gravitational collapse of non-spinning objects, resulting
in entities devoid of angular momentum and electric charge. The Penrose diagram of a
Schwarzschild black hole is illustrated in Figure 1(a), o�ering a comprehensive yet compact
visualization of spacetime’s causal structure. This diagram e�ectively distills the vastness of
spacetime into a finite representation. In the diagram, I≠ and I+ represent the concepts of
the infinite past and future. The area shaded in the diagram indicates the interior region of
the collapsing body. Notably, the trajectory of a light ray in this depiction is represented by
a line at a 45¶ angle. Consequently, the event horizon, also inclined at 45¶, dictates that any
object crossing it inexorably propagates towards the black hole’s center. The singularity, a
point of zero volume and infinite density, signifies the end of space and time.

The objective here is to demonstrate the thermal spectrum of the particles produced
by the black hole. Following the derivation in [2], inspired by Stephen Hawking’s original
work [3], the focus is drawn on massless, scalar fields in Schwarzschild spacetime. However as
shown in Hawking’s article, those results are applicable to any quantum field in general black
hole spacetimes. In the described approach, the space-time is divided into three regions, with
I≠ and I+ representing the so-called past and future, the middle region corresponding to
the black hole space. Concentrating on particle creation at late times where modes with high
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frequencies are the most significant, this allows to approximate their propagation through
geometrical optics. As illustrated in figure 1(b), for v > v0, a light ray traverses the black
hole at constant v = g≠1(u), emerging at constant u = g(v). For v < v0, the ray cannot
escape and is doomed to reach the singularity.

(a) (b)

Figure 1: Penrose diagran of a schwarzschild black hole. taken form [3].

Defining the retarded and advanced time coordinates as v = t + rú and u = t ≠ rú, and
expanding the massless field in modes fÊlm as per eq. (3), the past modes align with positive
frequency on I≠, and future modes correspond to positive frequency on I+ such that the
asymptotic solutions of the wave equation for massless scalar fields yields the following modes
:

f1,Êlm ≥ YlmÔ
4fiÊr

◊

Y
_]

_[

e≠iÊvon I≠

e≠iÊg≠1(u)on I+
f3,Êlm ≥ YlmÔ

4fiÊr
◊

Y
_]

_[

e≠iÊg(v)on I≠

e≠iÊuon I+

The case of a thin shell, as elaborated in [2], provides a clear resolution, though the results
generalize as shown in [3]. Within this framework, the space inside the shell is flat, whereas
the space outside is described by Schwarzschild spacetime. The null coordinates are then
defined di�erently in these two regions: inside the shell, they are denoted as V = T + r and
U = T ≠ r, and outside, as u = t + rú and v = t ≠ rú. By aligning the metrics at the shell’s
boundary, a specific condition arises, serving as a crucial junction between these two areas :

1 ≠ ( dr

dT
)2 = (r ≠ 2M

r
)( dt

dT
)2 ≠ (r ≠ 2M

r
)≠1( dr

dT
)2 (16)
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Deriving conditions at the shell’s entry, center, and exit, and combining these yields the
relationship between v and u:

u = g(v) = ≠4Mln(v0 ≠ v

C
) (17)

With C as a constant. The relation between Bogolubov coe�cients can then be determined
by taking the Fourier transform of f3,Êlm :

f3,Êlm =
ˆ Œ

0
dÊÕ(–ú

ÊÕÊlmf1,Êlm ≠ —ÊÕÊlmf ú
1,Êlm) (18)

This leads to the expressions for the coe�cients :

–ú
ÊÕÊlm = 1

2fi

Û
ÊÕ

Ê

ˆ Œ

v0

dveiÊÕve4MiÊln[(v0≠v)/C]

—ÊÕÊlm = ≠ 1
2fi

Û
ÊÕ

Ê

ˆ Œ

v0

dve≠iÊÕve4MiÊln[(v0≠v)/C]
(19)

Complex analysis of those two expressions allows to express the relationship between those
coe�cients as :

|–ÊÕÊlm| = e4fiMÊ|—ÊÕÊlm| (20)

Applying the condition (15) to this relation finnaly yields :

ÿ

ÊÕ
(|–ÊÕÊlm|2 ≠ |—ÊÕÊlm|2) =

ÿ

ÊÕ
(e8fiMÊ ≠ 1)|—ÊÕÊlm|2 = 1 (21)

Allowing to calculate the mean number of particles created in the mode Êlm :

NÊlm =
ÿ

ÊÕ
|—ÊÕÊlm|2 = 1

e8fiMÊ ≠ 1 (22)

This leads to the identification of a Planck spectrum, characteristic of black body radiation,
with a black hole’s temperature defined as T = 1

8fiM . This process of thermal emission
should then gradually reduces the mass of the black hole, which in turn leads to a decrease
in the area of the black hole’s event horizon. However, in classical physics, a black hole’s
event horizon is thought to never decrease because nothing should be able to emerge from it.
Therefore, the outcome derived in (22) sands strongly in contrast with what classical physics
would anticipate. Stephen Hawking o�ered a theoretical explanation for this phenomenon.
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He suggested that this apparent violation occurs due to a flux of negative energy entering
the black hole. Typically, at the event horizon, virtual particle-antiparticle pairs are created
and then annihilate each other. However, in the context of Hawking radiation, these pairs
can become separated. The antiparticle can tunnel into the black hole, where it becomes a
real particle, e�ectively reducing the black hole’s mass. Meanwhile, the particle with positive
energy can escape to infinity, contributing to the black hole’s thermal radiation. This process,
therefore, provides a mechanism by which a black hole can gradually lose mass and ultimately
shrink in size. But note that Hawking itself prevented to take its interpretation too literally
as it lacks a more complete quantum theory of gravity.

Moreover, those results give rise to other various intriguing questions, notably the black
hole information paradox. Indeed, this thermal nature of black holes suggests a potential loss
of information, due to the absence of correlations in the emitted particles. The information
within a black hole seems to disappear as it dissipates. There have been attempts to resolve
this paradox, including theories suggesting that perturbations in Hawking radiation might
carry the missing correlations in the outgoing radiation. This perspective postulates that
information might be released gradually during the black hole’s evaporation process.
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